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We perform numerical simulations, including parallel tempering, a four-state Potts glass model with binary
random quenched couplings using the JANUS application-oriented computer. We find and characterize a glassy
transition, estimating the critical temperature and the value of the critical exponents. Nevertheless, the extrapo-
lation to infinite volume is hampered by strong scaling corrections. We show that there is no ferromagnetic
transition in a large temperature range around the glassy critical temperature. We also compare our results with
those obtained recently on the “random permutation” Potts glass.
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I. INTRODUCTION

Potts models are among the building blocks of statistical
mechanics and their disordered versions �Potts glasses� are
commonly used to describe a large class of anisotropic ori-
entational glasses.1 For example, if a crystal of molecular
nitrogen is disordered by including some percentage of ar-
gon, the resulting compound, Ar1−x�N2�x, is a disordered qua-
drupolar glass.2 The Potts glass is one of the models of
choice to describe materials of this type.

The four-state �p=4� pure Potts model in two dimensions
�D=2� describes the adsorption of N2 on Kr in graphite
layers.3 In D=3 it describes the behavior of fcc antiferro-
magnetic materials �NdSb, NdAs, and CeAs, for example�
where the magnetic field points in the �1,1 ,1� direction.4

The site-diluted version of the Potts model can describe, for
example, the adsorption of hydrogen on the �1,1,1� plane of
nickel which has been previously disordered by inserting
oxygen atoms.5 In this paper we will study the four-state
glassy Potts model in which quenched random disorder in-
duces frustration. This model presents at least three interest-
ing theoretical problems that are still unsolved.

The first of these is the nature of the spin glass phase
transition; one needs to reliably compute the critical tem-
perature and the critical exponents in order to characterize
the universality class of the model. The second issue is how
the qualitative features of the phase diagram, including spin
glass and ferromagnetic phases, evolve when going from the
mean-field models to realistic, finite-dimensional models.
For example, previous work6–8 has shown that, at low tem-
peratures, the standard Potts glass �in which the Potts cou-
pling between two spins can have positive or negative sign�

develops spontaneous ferromagnetic ordering, which can af-
fect, or even prevent, a spin glass phase transition. Further-
more, in mean-field theory the value of this ferromagnetic
transition temperature, TFM, varies with the number p of
Potts states as TFM= �p−2� /2, which gives TFM=1 for the
four-state model. Mean-field analysis also shows that for p
�4 the spin glass transition temperature �where replica sym-
metry gets broken� is TRSB=1: for p=4 the two transition
temperatures coincide. Hence an interesting open problem is
to check whether or not this result, valid for D=�, also holds
if the dimensionality is finite. Also relevant here is that, in
the mean-field picture, the p=4 glassy model is “marginal”
since for p�4 the transition is continuous whereas for p
�4 the order parameter q�x� is discontinuous �even if, as
usual in spin glasses, there is no latent heat�.7 In a series of
interesting papers, Brangian et al.9 �see also the recent work
of Lee et al.10� studied the ten-state glassy Potts model and
found that for such high number of states the mean field and
the finite-dimensional cases are very different. Here we in-
vestigate whether the same is true for p=4.

The third relevant issue is again related to universality. In
order to avoid a possible contamination of the spin glass
transition point by the effects of the ferromagnetic phase,
Marinari et al.11 introduced a class of glassy Potts models,
the “random permutation” Potts glass, where a gauge sym-
metry protects the model against a ferromagnetic transition.
This approach has the advantage of being closer to reality
since, in real quadrupolar glasses, ferromagnetism plays no
role. One of these models has been thoroughly studied re-
cently by some of the authors of the present work,12 and its
behavior is found to be consistent with a Kosterlitz-Thouless
phase transition. One of its signatures is that, below the criti-
cal point, data for the correlation length divided by lattice
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size, � /L, for different sizes merge into a single curve. How-
ever, given the precision of the numerical data and allowing
for corrections to finite-size scaling, one cannot exclude a
value of the lower critical behavior near and slightly below
D=3.

A further motivation for this study is to investigate how
the behavior of the Potts glass changes with p. For p=3, a
Potts glass transition occurs10 with critical exponents �
�1.2 and ��0.02, while, for p=10, Ref. 10 finds no phase
transition in agreement with Ref. 9. In addition, we note the
Ising spin glass model, which corresponds to p=2, has �
�2.5 and ��−0.4 �see Refs. 13 and 14�. It would therefore
be very interesting to get a consistent picture of how the
nature of the Potts glass transition evolves with the number
of states p.

In an attempt to give reliable answers to these questions,
we have performed extensive numerical simulations using
one unit of the JANUS dedicated computer �which has a total
of 16 units�.15 We have been able to thermalize the p=4 Potts
glass model on an L=16 cubic lattice down to the low tem-
perature phase: this gives us information on far larger lattice
sizes than had been possible before.

The outline of the paper is the following. In Sec. II we
introduce our model and physical observables. In Sec. III we
describe the numerical methods that we have used in the
simulations. In Sec. IV we describe our tests of thermaliza-
tion and our approach to data analysis, and we analyze our
findings, both for the overlap and for the magnetization. The
main results are that we have been able to characterize the
spin glass transition and that no onset of ferromagnetic order
has been found at and below the spin glass transition point.
We discuss these findings in Sec. V.

II. MODEL AND OBSERVABLES

In the p-state Potts model, each site i of a three-
dimensional cubic lattice of linear size L with periodic
boundary conditions has a scalar spin si which takes one of
the values 1 ,2 , . . . , p. The Hamiltonian of the standard Potts
glass model is

H = − �
�i,j�

Jij�si,sj
, �1�

where the sum runs over all nearest-neighboring sites. Two
neighboring sites i and j interact with energy −Jij when their
spin states si and sj have the same value, and otherwise their
energy is zero. The couplings Jij are independent quenched
random variables taken from a bimodal distribution
�Jij = 	1� with zero average. From now on we will focus on
the four-state �p=4� case.

It is possible to represent the state of site i by a
�p−1�-dimensional vector, Si, equal to one of the p unit vec-
tors Sa pointing to the corners of a hypertetrahedron in
�p−1�-dimensional space. These vectors satisfy the relations

Sa · Sb =
p�ab − 1

p − 1
. �2�

Equation �2� defines the simplex representation16 that we will

use to describe the observables measured in the simulations.
In order to investigate the possible presence of �spurious�

ferromagnetic effects we have carefully checked the value of
the magnetization, looking for possible signs of spontaneous
ferromagnetic ordering. In the simplex representation we de-
fine the vector magnetization as

m =
1

N
�
i=1

N

Si, �3�

where N�L3 is the number of spins.
The existence of a possible transition to a ferromagnetic

phase has also been analyzed by studying the magnetic sus-
ceptibility


M = N��m�2� , �4�

where ��· · ·�� stands for the thermal average and �· · ·� denotes
the disorder average.

To study the glass transition we define the spin glass order
parameter as a tensorial overlap between two replicas �i.e.,
two copies of the system defined with identical couplings
whose spin values evolve independently�. The standard defi-
nition of its Fourier transform with wave vector k is10

q���k� =
1

N
�

i

Si
�1��Si

�2��eik·Ri, �5�

where Si
�1�� is the �th component of the spin of the first

replica in the simplex representation and Si
�2�� is the �th com-

ponent of the spin in the second replica.
The momentum space, spin glass susceptibility is defined

by


q�k� = N�
�,�

��q���k��2� . �6�

We also define the correlation length � in terms of the Fou-
rier transform17 in Eq. �6� as

� =
1

2 sin�km/2�
	 
q�0�


q�km�
− 1
1/2

, �7�

where km is the minimum wave vector allowed within the
lattice. Periodic boundary conditions imply that this vector is
km= �2� /L ,0 ,0� or one of the two other related vectors in
which the components are permuted. The definition in Eq.
�7� arises naturally on a finite lattice.

We will base a large part of our analysis on the dimen-
sionless correlation length � /L, i.e., on the correlation length
divided by the lattice size. This quantity does not depend on
L �asymptotically for large L� at the transition temperature,
which allows us to obtain a precise estimate of Tc from the
value of T at which data for different lattice sizes cross.17

III. NUMERICAL METHODS

We have simulated three-dimensional cubic lattices with
linear sizes L=4, 6, 8, and 16. Because spin glass simula-
tions have very long relaxation times, we used the parallel
tempering �PT� algorithm18 to speed up the dynamical pro-
cess that brings the system to thermal equilibrium and even-
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tually explores it. Physical quantities are only measured after
the system has been brought to equilibrium.

The dynamics is comprised of single-spin updates and
temperature swaps. The single-spin updates are carried out
with a sequential heat bath �HB� algorithm. We define a
Monte Carlo sweep �MCS� as N sequential trial updates of
the HB algorithm �i.e., every spin undergoes a trial update
once�.

The PT algorithm �applied to a given realization of the
quenched disorder, that we will call a sample� is based on
simulating a number of copies of the system with different
values of the temperature but the same interactions. Ex-
changing the temperature of two copies with adjacent tem-
peratures with a probability that respects the detailed balance
condition is the crucial mechanism of PT. The result is that
each copy of the system drifts in the whole allowed tempera-
ture range �that has been decided a priori�. When a copy is at
a high temperature it equilibrates fast and so each time it
descends to low temperature it is likely to be in a different
valley in the energy landscape.

The HB and the PT algorithms require high quality ran-
dom numbers; we generate them with a 32-bit Parisi-
Rapuano shift register19 pseudorandom number generator.
Details about our numerical simulations are summarized in
Table I. The simulation of the smaller lattices, with L=4 and
6, was performed on standard computers. More powerful
computational resources are needed to deal with the L=8 and
16 systems, so we have studied them on a prototype board of
the JANUS �Ref. 15� computer, a field programmable gate
array �FPGA� based computer optimized for a relatively small
set of hard computational problems �among them, spin glass
simulations�. A performance comparison between an Intel�R�
Core2Duo�TM� processor and one JANUS processor �one
FPGA� shows that the latter is about one thousand times
faster20 when simulating Potts models. JANUS has allowed us
to thermalize a large number of samples for bigger sizes than
would have been feasible on a standard computer. The com-
putational effort behind our analysis amounts to approxi-
mately 6 years CPU time on a 2.4 GHz Intel�R�
Core2Duo�TM� processors for L=8 and thousands of CPU
years for L=16.

Data input and output are a critical issue for JANUS per-
formance, so we had to carefully choose how often to read
configuration data, in general, we end up taking fewer mea-
surements than in simulations on a traditional PC. Having
fewer �but less correlated� measurements does not affect the
quality of our results. We read and analyze values of physical

observables every 2
105 MCS for both L=8 and 16 �see
Table I for details�.

On the larger lattices, we perform a PT step every 10
MCS while on the smaller lattices this value is 5. In a stan-
dard computer the PT algorithm takes a negligible amount of
time, compared to a whole MCS. However, in JANUS the
clock cycles needed by one PT step are more than those
needed for a MCS. For this reason we chose to increase the
number of MCS between two PT steps. However, this num-
ber should not be too large, as we do not want to negatively
affect the PT efficiency. A preliminary analysis has been car-
ried over to test how the PT parameter would affect the simu-
lation results and we have selected a value that seems to be
well optimized �see Table I�.

IV. RESULTS

A. Thermalization tests

We start by briefly discussing the tests that we performed
to check if our numerical data are really well thermalized.
We use a standard test in which a given physical quantity is
averaged �first over the thermal noise and then over the
quenched disorder� over logarithmically increasing time win-
dows. Equilibrium is reached when successive values con-
verge. We emphasize that it is crucial for time to be plotted
on logarithmic scale.

We are interested in the correlation length, defined in Eq.
�7�, which is plotted in Fig. 1 at the lowest simulated tem-
perature �the hardest case for thermalization�. We see that the
values of the correlation length reach a clear plateau for all
sizes, strongly suggesting that our samples have reached
thermal equilibrium. This analysis also provides useful infor-
mation about the number of sweeps that have to be discarded
at the beginning of the Monte Carlo history in order to use
only equilibrated configurations.

B. Finite-size scaling analysis; the quotient method

To measure the critical exponents we used the quotient
method.17,21 In this approach one compares results for lattice
sizes L and sL for integer s which here we take to be 2. First,
for a pair of lattice sizes L and sL, we find the point, �
=�cross, where the correlation length divided by system size
is equal for the two sizes, i.e.,

��sL,�cross�
sL

=
��L,�cross�

L
, �8�

or equivalently

TABLE I. For each lattice size we show the number of disorder samples that we have analyzed, the
number of MCS per sample, the range of simulated inverse temperatures �=1 /T, the number of �uniformly
distributed� � values used for PT, the number of MCS performed between two PT steps �NHB�, and the
number of MCS between measurements �Nm�.

L Nsamples MCS ��min,�max� N� NHB Nm

4 1000 3.2
105 �2.0,6.0� 9 5 103

6 1000 8
105 �2.5,5.0� 7 5 103

8 1000 2
108 �2.7,4.2� 16 10 2
105

16 1000 8
109 �1.7,4.1� 32 10 2
105
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Q��L,sL� �
��sL,�cross�
��L,�cross�

= s . �9�

We then determine similar ratios for other observables. If an
observable O diverges near the critical temperature as t−xO,
where t is the reduced temperature, then we expect

QO�L,sL� �
O�sL,�cross�
O�L,�cross�

= sxO/� + O�L−�� , �10�

where � is the exponent describing the leading corrections to
scaling and � is the critical exponent related with the diver-
gence of the correlation length.

Applying Eq. �10� to the operators ��� and 
q yields,
respectively, the critical exponents 1+1 /� and 2−�q. Simi-
larly, if we apply Eq. �10� to the magnetic susceptibility we
obtain the exponent 2−�m.

C. Overlap critical exponents

In Fig. 2, we plot the correlation length �defined in Eq.
�7�� divided by system size for different lattice sizes as a
function of the temperature. According to Eq. �8�, the data
should cross if there is a transition. There are clear crossings
in the data, though these occur at different temperatures for
different sizes. Even though the data represent a considerable
computing effort, it is still not enough to be able to extrapo-
late reliably the intersection temperatures to infinite size.
Hence our results are consistent with a second-order transi-
tion at a finite temperature, but do not rule out, for example,
the marginal behavior found in Ref. 11 for the random per-
mutation Potts glass.

From Fig. 2 we determined the crossing values �cross for
the pairs of sizes �4,8� and �8,16�, see Table II. By computing
the spin glass susceptibility and the derivative of the corre-
lation length at these crossing points, we obtain estimates of
the corresponding effective critical exponents, �q and �,
from Eq. �10� and also show these results in Table II. Since

we have only data at a discrete set of temperatures, we
needed an accurate interpolating procedure to determine the
crossing points and the values of other measurables at these
points. We chose to fit all available data with a cubic spline.
To test that our results are independent of the interpolation
procedure we also implemented a linear interpolation around
the crossing point. We computed the crossing point and ef-
fective exponents with both procedures and found agreement
within the statistical precision of our results.

The two values of �cross shown in Table II are rather dif-
ferent, suggesting large corrections to scaling, i.e., a small
value for the correction exponent �, so we do not have
enough information to reliably compute asymptotic critical
exponents. Nonetheless, from Table II we see that the trend
of �q with increasing size is very different from what would
be observed in the absence of a transition for which �q
would be equal to 2. Hence, our numerical data strongly
support the existence of a spin glass phase transition at finite
temperature.

D. Magnetization in the critical region

As discussed in the introduction, the standard Potts glass
studied here could undergo a ferromagnetic phase transition
at low T. This second transition could bias our analysis of the
spin glass phase by influencing the behavior even close to
the glass transition temperature �a serious problem if the two

TABLE II. Results for the critical exponents using the quotient
method. �L1 ,L2� are the two lattice sizes used and �cross is the
inverse temperature where the two curves of the dimensionless cor-
relation length � /L cross �see Fig. 2�. The values for � and �q are
extracted from measurements involving the overlap q, whereas �m

has been computed from the magnetization. These results were ob-
tained with the cubic spline interpolating procedure.

�L1 ,L2� �cross�L1 ,L2� ��L1 ,L2� �q�L1 ,L2� �m�L1 ,L2�

�4,8� 3.59�4� 0.83�5� 0.15�4� 1.84�3�
�8,16� 4.00�4� 0.96�8� 0.12�6� 2.06�3�

2
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6

7

103 104 105 106 107 108 109 1010

ξ

t

L = 4 , β = 6.0

L = 6 , β = 4.5

L = 8 , β = 4.4

L = 16 , β = 4.1

FIG. 1. �Color online� A thermalization test. We show the be-
havior of the time-dependent spin glass correlation length as a func-
tion of Monte Carlo time. We have averaged the correlation length
using a logarithmic binning procedure. We show data for the lowest
temperature simulated for each size.

0.1

0.2

0.3
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ξ
/L

β

L = 4

L = 6

L = 8

L = 16

0.41

0.44

0.47

3.8 4 4.2

FIG. 2. �Color online� The spin glass correlation length divided
by L as a function of � for L=4, 6, 8, and 16. In the inset we
magnify the crossing between the L=8 and L=16 curves.
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temperature values are very close�. It is therefore important
to investigate whether there is a region with nonzero sponta-
neous magnetization close to the spin glass critical region.

We have therefore computed, using the quotient method,
the growth of the magnetic susceptibility, showing the results
in the last column of Table II. The magnetic susceptibility
diverges with an exponent 2−�m, so �m�2 is a clear foot-
print for the absence of a magnetic phase transition. For the
two largest lattices we find a value statistically compatible
with 2. Hence we can safely discard the scenario where a
ferromagnetic transition appears at �cross. We are observing
just a glass transition.

In order to argue that there is no ferromagnetic transition
in the whole temperature range studied, we computed the
magnetization and susceptibility throughout this range. In the
paramagnetic phase, the magnetization is random in sign so
its modulus � �m� � is proportional to 1 /
N and the magnetic
susceptibility 
M =N��m�2� is independent of size. By con-
trast, in a ferromagnetic phase, � �m� � tends to a positive
value at large N so 
M diverges proportionally to N.

In the main part of Fig. 3 we plot 
M versus the inverse of
the temperature. In the glass pseudocritical region, �
�3.5–4, the two largest lattices give very similar results, so
we recover the result �m=2 quoted in Table II. Furthermore,
at no temperature does the susceptibility increase strongly
with size. Similarly, the magnetization, shown in the inset of
Fig. 3, decreases rapidly with size, which also indicates para-
magnetic behavior. From Fig. 3 we conclude that there is no
ferromagnetic phase in the region �� �0, �4.5�.

V. CONCLUSIONS

In this study we have numerically explored the equilib-
rium behavior of a four-state Potts glass with binary cou-
plings on large lattices �L�16�. A prototype board �16 FPGA

processors� of the JANUS �Ref. 15� optimized computer, using

a parallel tempering algorithm,18 has allowed us to do this
for the first time.

By computing the critical exponent associated with the
magnetic susceptibility and by analyzing the behavior of the
magnetization in the critical region, we have shown that a
paramagnetic-ferromagnetic phase transition does not occur.
This result is different from mean-field theory, where, for
general p, one sees both ferromagnetic and spin glass transi-
tions at temperatures which become equal for p=4.

We have found and characterized a spin glass phase tran-
sition with critical exponents ��1, �q�0.1 and hence �q
�1 /2. In order to extrapolate these values to the thermody-
namic limit, larger lattice sizes need to be simulated �which
we will try to accomplish in the near future�. The critical
exponents computed here are compatible with known values
for other values of p. We note that the exponent � decreases
with increasing number of states p, since �=2.45�15� for p
=2 �see Ref. 13� and �=1.18�5� for p=3 �see Ref. 10�. The
values presented in Table II for p=4 are consistent with this
decrease which is expected to end when �= �̃=2 /D
= �=2 /3 in D=3�, since a finite-size scaling estimate im-
plies that, for a disordered system, the transition is then first
order.22 Similarly, the exponent � grows with p since
�=−0.375�10� for p=2 and �=0.02�2� for p=3, while our
estimates in Table II are larger.

The hypothesis of a disordered first-order phase transition
provides an upper bound �=1 /2 �since the susceptibility is
expected to grow as Ld/2�. In the mean-field solution of the
Potts glass, second-order phase transitions are found for
small values �p�4�, but a first-order transition is found7 for
p�4. An interesting problem for future study is whether the
transition remains second order at large p for short-range
spin glasses in three dimensions or whether, for a given value
of p�4, the second-order transition disappears �in a tricriti-
cal point� to be replaced by a first-order phase transition at
larger p.24

We have studied the standard Potts glass which is ex-
pected to be in the same universality class as the permutation
Potts glass.11 However, the present state of the art in numeri-
cal simulation does not enable us to confirm this. In the
permutation Potts glass one does not observe a clear cut
phase transition. Instead of a crossing point there is a smooth
merging of the curves for different lattice sizes. This could
indicate transient behavior, i.e., there is really a phase tran-
sition but it is only visible on larger lattices, or a Kosterlitz-
Thouless-type transition.12 For the standard Potts glass stud-
ied here, we find a finite transition as indicated by a crossing
of the correlation length data in Fig. 2. However, we note
that the crossing point shifts to larger �, i.e., smaller T, at
larger sizes. It is therefore possible that asymptotic critical
behavior could be quite marginal, as is found in the permu-
tation Potts glass. Consequently the standard and permuta-
tion Potts glass models may be in the same universality class,
but larger sizes are needed to confirm this.
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